New model to explain tooth wear with implications for microwear formation and diet reconstruction.

نویسندگان

  • Jing Xia
  • Jing Zheng
  • Diaodiao Huang
  • Z Ryan Tian
  • Lei Chen
  • Zhongrong Zhou
  • Peter S Ungar
  • Linmao Qian
چکیده

Paleoanthropologists and vertebrate paleontologists have for decades debated the etiology of tooth wear and its implications for understanding the diets of human ancestors and other extinct mammals. The debate has recently taken a twist, calling into question the efficacy of dental microwear to reveal diet. Some argue that endogenous abrasives in plants (opal phytoliths) are too soft to abrade enamel, and that tooth wear is caused principally by exogenous quartz grit on food. If so, variation in microwear among fossil species may relate more to habitat than diet. This has important implications for paleobiologists because microwear is a common proxy for diets of fossil species. Here we reexamine the notion that particles softer than enamel (e.g., silica phytoliths) do not wear teeth. We scored human enamel using a microfabrication instrument fitted with soft particles (aluminum and brass spheres) and an atomic force microscope (AFM) fitted with silica particles under fixed normal loads, sliding speeds, and spans. Resulting damage was measured by AFM, and morphology and composition of debris were determined by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Enamel chips removed from the surface demonstrate that softer particles produce wear under conditions mimicking chewing. Previous models posited that such particles rub enamel and create ridges alongside indentations without tissue removal. We propose that although these models hold for deformable metal surfaces, enamel works differently. Hydroxyapatite crystallites are "glued" together by proteins, and tissue removal requires only that contact pressure be sufficient to break the bonds holding enamel together.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Functional and Palaeoecological Implications of Tooth Morphology and Wear for the Megaherbivorous Dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada

Megaherbivorous dinosaurs were exceptionally diverse on the Late Cretaceous island continent of Laramidia, and a growing body of evidence suggests that this diversity was facilitated by dietary niche partitioning. We test this hypothesis using the fossil megaherbivore assemblage from the Dinosaur Park Formation (upper Campanian) of Alberta as a model. Comparative tooth morphology and wear, incl...

متن کامل

Full Mouth Reconstruction of a Patient with Worn Dentition: A Clinical Report

Abstract The attrition of anterior teeth leads to the loss of efficient anterior guidance, which protects posterior teeth from wear during lateral excursions. This clinical report describes a 48-year-old man with diagonal tooth wear and posterior mandibular tooth loss. The clinical diagnosis was based on a complete oral examination, photos, functional analysis of lateral excursion movements,...

متن کامل

Human dental microwear caused by calcium oxalate phytoliths in prehistoric diet of the lower Pecos region, Texas.

Recent research demonstrates that silica phytoliths of dietary origin are associated with microwear of human teeth. Previous research has shown that severe enamel microwear and dental wear characterizes Archaic hunter-gatherers in the lower Pecos region of west Texas. Calcium oxalate crystals are especially common in Archaic coprolites. The vast majority are derived from prickly pear and agave,...

متن کامل

Mechanisms and causes of wear in tooth enamel: implications for hominin diets.

The wear of teeth is a major factor limiting mammalian lifespans in the wild. One method of describing worn surfaces, dental microwear texture analysis, has proved powerful for reconstructing the diets of extinct vertebrates, but has yielded unexpected results in early hominins. In particular, although australopiths exhibit derived craniodental features interpreted as adaptations for eating har...

متن کامل

Controlled feeding trials with ungulates: a new application of in vivo dental molding to assess the abrasive factors of microwear.

Microwear, the quantification of microscopic scratches and pits on the occlusal surfaces of tooth enamel, is commonly used as a paleodietary proxy. For ungulates (hoofed mammals), scratch-dominant microwear distinguishes modern grazers from browsers, presumably as a result of abrasion from grass phytoliths (biogenic silica). However, it is also likely that exogenous grit (i.e. soil, dust) is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 34  شماره 

صفحات  -

تاریخ انتشار 2015